UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

FORTRAN COMPUTER PROGRAMS FOR RUNNING MEDIAN
FILTERS AND A GENERAL DESPIKER

By
Jahn R. Evans

Open-File Report
81-1¢91

This report is preliminary and has
not been reviewed for conformity with
Geological Survey editorial standards

1
INTRODUCTION

This report consists mainly of listings of the FORTRAN subroutines MEDFLT,
an odd-length running median filter, and DESPIK, a general despiker and
interpolator. The use and behavior of these time-domain digital filters are
explained in Evans (1981); a brief description follows here. Punched card
copies of the routines are available from the author at

345 Middlefield Road, MS-77
Menlo Park, CA 94§25.
Running Median Filters:

Running Median FiTters (RMF's) are non-linear and cannot yet be described
analytically. Their behavior is, however, predictable with the following main
characteristics:

1. The "transfer behavior" for gaussian white noise is similar to that of

running means (ie. convolution with a boxcar; Figure 1). Side-lobes and

zeros are at the same frequencies, but RMF's have slightly higher
side-lobes.

2. RMF's produce more "numerical noise" than their linear counterparts.

Since a median is exactly equal to one of the numbers given it, there is

no “smearing out" of small errors in those numbers.

3. RMF's are useful because they effectively destroy spikes (brief but

large excursions of the data; Figure 2). An RMF with a window length of m

points will destroy any spike of (m-1)/2 or fewer points. Linear filters

change one-sided spikes into broad bumps ruining otherwise good data near
the spike.

4. RMF's pass locally monotonic functions unchanged. An RMF with a

windov width of m points will not affect any signal which is monotonic on

every n length segment. In particular, a square wave with no peak or
trough narrower than (m+1)/2 will be unaffected.

One of the best direct applications of odd-length RMF's is filtering noisy
square-wave time codes (Figure 3). Spikes are removed but the basic signal is
only rarely affected, and then only where it is ambiguous.

The briefest segment of the square-wave code (2@@ ms for WWVB radio time
code) determines the longest RMF window that can be used without damaging the
underlying signal:

Mhax = 2(N/S - 3/2)
where Npax is odd, N=duration of shortest square-wave segment, and
S=sampTing interval of digitizer. For N=2@@ ms and S=5 ms (2@¢ samples per
second), Mpax=77. Normally a much shorter window is used to save
computation time.
Despiker:

e numerical noise of an RMF is troublesome or if minimal impact on
the time series is desired, the general despiker DESPIK can be used. It
affects the trace only where spikes are found and is the better routine to
apply to seismograms.

DESPIK can be fooled by data oscillating rapidly between good and bad
values. If you tell DESPIK to detect one-point-long spikes and gives it a
series such as "++++++/+/+/+/+//////" (+=good point, /=bad point)
then"/+/+/+/+" will all be called bad and "//////" will be called good as long
as all the latter points are all about the same value. If the value 99999,
for example, identifies known bad points, this extra information can be given
to DESPIK by using the statement beginning with "C:" in the source code.
Otherwise you may find the routine interpolating from a section of good data,
across a section of oscillating data, to a section of 99999's and producing
ugly results.

General:

Une of the annoying things about DESPIK and MEDFLT is that they require
you to understand your data. You must choose a window width and (in DESPIK) a
mininum spike height. To make such choices, you must know what sort of good
data to expect and what sort of spiking behavior; they should not overlap.

You can effectively despike when the spikes are of much shorter duration than
the data events. These routines cannot save bad data, but they can be very
powerful tools for saving good data contaminated by a few spikes and sometimes
can help badly spiked data.

DESPIK and MEDFLT are not the whole story in despiking--use all the
information available to you to accomplish the task--but they are very
powerful general tools. Velleman and Hoaglin (1978) give a set of slower but
more general robust filtering routines. Those routines do odd- or even-length
RMF's as well as some other specialized operations of the sort Tukey (1977)
describes for handling array ends and such things. They are useful to people
with scatter plots which need smoothing.

MEDFLT
The running median filter algorithm implemented by this routine is Ken
Anderson's*, takes 0(m) operations and is the fastest I know of. The most

direct algorithm fully sorts values in the window each time it produces a new
output point; it requires 0(m2) operations.

CALL MEDFLT (ARRAY,LN,M)

-ARRAY(LN) is the integer or real data (see comments).
and an output.

-M is the (odd) window length (3.LE.M.LE.1§71; the upper 1limit can be
changed either direction easily).

Both an input

*Now at Lincoln Labs.

SUBROUTINE MEDFLT (ARRAY,LN,M)
Cmmmm- ODD-LENGTH, UNWEIGHTED RUNN ING MEDIAN FILTER----m--rmemeeceecccomemceceeee
C-mmm- NON-L INEAR -- REMOVES SPIKES OF WIDTH (M-1)/2 OR LESS; LEAVES
c SHARP STEPS UNAFFECTED (W.R.T. TIME); OTHERWISE BEHAVES ABOUT L IKE
c UNWEIGHTED RUNNING MEAN.

C-mmmm EACH POINT IS REPLACED BY THE MEDIAN OF THE NEAREST M POINTS OF
c THE ORRIGINAL SERIES.
Cmmmm M MUST BE ODD FOR THIS ALGORITHM (3.LE.M.LE.1#1 IN THIS VERSION).
e
c PARAMETER L IST:
c "ARRAY" BOTH INPUT AND OUTPUT TIME SERIES
c “LIN" - DIMENSION OF "ARRAY"
g "M" - WINDOW SIZE FOR RUNNING MEDIAN
C-mmmm ("ARRAY" TYPE CAN BE CHOSEN BY APPROPRIATE USE OF ONE OF THE
c DECLARAT§0N STATEMINTS AND APPROPRIATE IF STATEMENTS PRECEEDED
c BY "C*".
Commmm USES KEN ANDERSON'S ALGORITHM FOR ORDER M EXECUTION TIME AS
C ENCODED AND SLIGHTLY MODIFIED BY
c JOHN R. EVANS
c U. S. GEOLOGICAL SURVEY
c 345 MIDDLEFIELD ROAD, MS-77
c MENLO PARK, CA 94425
C----- @8/81/79
Com e m e cc e = = = = o o e e e e e e e e e e e e e e e e o e e
REAL SORT(1f41),S,ARRAY(LN)
C* INTEGER SORT(181),S,ARRAY(LN)
C* COMPLEX SORT(1@#1),S,ARRAY(LN)
INTEGER SUBS(141),IS
WRITE (6,1) M,LN
1 FORMAT (/," STARTING MEDFLT. WINDOW LENGTH=",I3,
*"_ ARRAY LENGTH=",I1¢,".")
M1=M-1
N=(M-1)/2
NT=N+1
NS=LN-N
I0LD=¢
INEW=M
C--mmn TEST FOR ERRORS-======mm e e e e e e
IF (M.LT.3) GOTO 2
IF (M.GT.LN.OR.M.GT.141) GOTO 4
IF ((2*N+1).NE.M) GOTO 6
GOTO 14
2 WRITE (6,3) M
3 FORMAT (" WINDOW LENGTH TOO SMALL. M=",I5)
GOTO 8
4 WRITE (6,5) M
5 FORMAT (" WINDOW LENGTH TOO GREAT. M=",15)
GOTO 8
6 WRITE (6,7) M
7 FORMAT (" WINDOW MUST BE ODD LENGTH. M=",I5)
8 WRITE (6,9)
9 FORMAT (" ----- ERROR IN SUBROUTINE MEDFLT----- “/,
** (TIME SEARIES RETURNED UNFILTERED.)")
GOTO 1¢¢

"I0" IS SUBSCRIPT OF "ARRAY"
"I" IS FOR LOCAL USE INCLUDING "OLDEST VALUE" SEARCH
OF "SORT" (AND "SUBS")
"IOLD" IS SUBSCRIPT OF OLDEST ELEMENT OF
"ARRAY" STILL HELD IN "SORT". "SUBS"
IS SEARCHED FOR IT.
"INEW" IS SUBSCRIPT OF "ARRAY" FOR ELEMENT TO BE
ADDED TO "SORT" AND "SUBS"
----- FILL SORTING ARRAY FOR FIRST TIME AND BUBBLE SORT (WITH INCREASING SIZE
TO RIGHT)
19 I0=NT
DO 2¢ I=1,M
SUBS(I)=1
26 SORT(I)=ARRAY(I)
3¢ KEY=p
DO 4p I=1,M
IF (SORT(I)-SORT(I+1)) 4¢,48,35
c* IF (REAL(SORT(I))-REAL (SORT(I+1))) 44,4¢,35
C* ANY OTHER COMPARISON OF COMPLEX NUMBERS APPROPRIATE TO THE
C* SPECIFIC APPLICATION
35 S=SORT(I)
SORT(I)=SORT(I+1)
SORT(I+1)=$
1S=SUBS(I)
SUBS(I)=SUBS(I+1)
SUBS(I+1)=1IS
KEY=1
49 CONTINUE
IF (KEY) 1919,50,3¢

C PUT RESULT (MIDDLE POINT OF "SORT") INTO INPUT "ARRAY" (NOTE THAT
C NO OVERWRITE OF INPUT OCCURS BECAUSE INPUT IS SAVED IN "SORT" AS
C LONG AS IT IS NEEDED)

OO OOOOOOO

5@ ARRAY(I0)=SORT(N1)
Cmmmm STEP SUBSCRIPTS=m=mmmmmmmmmmm e ceceem e e e e e e e e e
10=10+1
IF (10.GT.NS) GOTO 18¢
INEW= IN EW+1
I0LD=IOLD+1
o— Fxgn OLD SUBSCRIPT=mmcmom e e e e e e e e e e e e e
I=
60 I=I+1
IF (SUBS(I)-IOLD) 1¢2¢,65,68
— DEC IDE WHICH WAY TO MOVE NEW ENTRY=mmemmcommmccocccccccc e e e e e e e e e e
65 S=ARRAY(INEW)
IF (I-1) 1938,79,67
67 IF (SORT(I-1)-S) 7¢,84,77
C* 67 IF (REAL(SORT(I-1))-REAL(S)) 7¢,88,77
C* OR ANY OTHER APPROPRIATE COMPARISON OF COMPLEX #'S

Commm- MOVE NEW ENTRY UP UNTIL IT FITS-emcemmmmmm oo e
78 IF (I-M) 72,80,194¢
72 IF (SORT(I+1)-S) 74,80,80
C* 72 IF (REAL(SORT(I+1))-REAL(S)) 74,80,80
C* OR ANY OTHER APPROPRIATE COMPARISON OF COMPLEX #'S
74 SORT(I)=SORT(I+1)
SUBS(1)=SUBS(I+1)
I=1+1
GOTO 7@
(R MOVE NEW ENTRY DOWN UNTIL IT FITS-e---ccmmmmccccc e ccccccom e e ce e
75 IF (SORT(I-1)-S) 8¢,80,77
C* 75 IF (REAL(SORT(I-1))-REAL(S)) 88,80,77
C* OR ANY OTHER APPROPRIATE COMPARISON OF COMPLEX #'S
77 SORT(I)=SORT(I-1)
SUBS(I)=SUBS(I-1)
I=1-1
IF (1-1) 1¢5¢,88,75
Commm- DROP NEW ENTRY INTO ITS CORRECT PLACE---=c-mcmmmcmm oo
8@ SORT(I)=S
SUBS(1)=INEW
GOTO 5@
C----- END OF FILTERING=----c-mcmm oo m e e e e m e
108 WRITE (6,118)
11@ FORMAT (" RETURN FROM MEDFLT.",/)
RETURN
C----- UNUSUAL ERROR RETURNS--=co oo oo oo e oo
1610 L INE=84
GOTO 1d66
1§20 L INE=97
GOTO 1g60
1930 L INE=1¢¢
GOTO 196@
1940 L INE=1¢5
GOTO 1¢6¢
1958 L INE=129
1966 WRITE (6,197¢) L INE

1970 FORMAT (//," ------ UNUSUAL ERROR RETURN------ n" FROM L INE",
*13," OF MEDFLT",/," ----CONTACT J.R.EVANS----",//)
STOP

END

DESP IK
This routine employs MEDFLT to identify spikes in the data, by comparing
abs(trace-RMF(trace)) to a threshold, and does linear or piecewise continuous
cubic polynomial (PCCP) interpolations across identified spikes (Wiggins,
}?76). I§ can be used to identify spikes and/or interpolate across them
igure 4).

CALL DESPIK (IDATA,IWORK,SPKFLG,NPTS,MAXDUR,MINSIZ, INTERP)

IDATA(NPTS) is the integer input data (also used for output when

INTERP.GT.@#). The routine can handle real arays with minor
changes (see comments).

INORK(NPTS) is work space for the routine.

SPKFLG(NPTS) is a logical array which is true everywhere except
where spikes are identified (an output if INTERP is
non-negative; an input if INTERP.LT.§).

MAXDUR is the maximum duration (in number of points) of excursions
of the data that are to be called "spikes". In the call to
MEDFLT the window length M is 2*MAXDUR+1.

MINSIZ is the minimum height or depth of excursions relative to
their immediate surroundings that are to be called "spikes".
MAXDUR and MINSIZ define "spike"--choose them thoughtfully.

INTERP=¢ to identify but not touch spikes.
=1 or 2 to identify and do a linear or piecewise continuous
cubic polynomial interpolation across spikes, respectively.
=-1 or -2 to do only the interpolation (segments to be

interpolated are identified to the routine by making the same
points in SPKFLG false).

SUBROUTINE DESPIK (IDATA, IWORK,SPKFLG,NPTS,MAXDUR,MINSIZ,INTERP)
----- "GENTLE" GENERAL DESPIKING ROUTINE.
----- IF THE USEFUL DATA IN ARRAY "IDATA(NPTS)" IS OF SUBSTANTIALLY
LOWER FREQUENCY THAN THE SPIKES TO BE REMOVED, THIS ROUTINE
CAN BE USED TO:
A) IDENTIFY SPIKES (INTERP=@)
B) IDENTIFY AND INTERPOLATE ACROSS SPIKES (INTERP=1 OR 2)
C) INTERPOLATE ACROSS SPIKES GIVEN "SPKFLG" AS AN INPUT (INTERP=-1
OR -2). 1IN OTHER WORDS, THE USER HAS IDENTIFIED THE SPIKES
BY SOME MEANS ALREADY AND JUST WANTS AN INTERPOLATOR.

IN ALL CASES THE LOGICAL ARRAY "SPKFLG(NPTS)" WILL BE TRUE EVERYWHERE

EXCEPT WHERE SPIKES ARE. IN CASE A) "IDATA" IS UNAFFECTED; IN

CASE B) "IDATA" IS AFFECTED ONLY WHERE SPIKES WERE FOUND; IN

CASE C) "IDATA" IS AFFECTED WHEREVER "SPKFLG" IS .FALSE..

INTERP=+1 OR -1 GIVES A LINEAR INTERPOLATION ACROSS SPIKES,

INTERP=+2 OR -2 GIVES A CUBIC INTERPOLATION ACROSS SPIKES, USING THE
PIECEWISE CONTINUOUS CUBIC POLYNOMIAL INTERPOLATION SCHEME OF
WIGGINS (1976).

FILTERING DOES NOT OPERATE WITHIN "MAXDUR" POINTS OF EITHER END
OF THE DATA ARRAY.

THE USER MUST KNOW THE CHARACERISTICS OF THEIR DATA AND SHOULD USE ANY

SPECIAL KNOWLEDGE OF IT TO IDENTIFY AND REMOVE SPIKES BEFORE APPLYING

THIS GENERAL DESPIKER:

A "SPIKE" IS ANY SEGMENT OF DATA NOT MORE THAN "MAXDUR" POINTS LONG
WHICH IS AT LEAST "MINSIZ" DIFFERENT IN VALUE FROM ITS NEAREST
VALUED NEIGHBORS. "NEIGHBORS" ARE POINTS NO MORE THAN MAXDUR
POINTS FROM THE SPIKE. FOR D=ANY DATA POINT, N=NEIGHBOR POINT,
E=END POINT, S=SPIKE POINT, AND MAXDUR=3 FOR EXAMPLE:

EEEDDDDDDDDDNNN SSSNNN DDDDDDDDDDEEE
EEEDDDDDDDDDNNN SSNNNDDDDDDDDDDDEEE
EEEDDDDDDDDDNNN SNNN DDDDDDDDDDDDEEE

ARE POSSIBLE SPIKE SEQUENCES FOR A SMALL SAMPLE DATA ARRAY.
----- USES RUNNING MEDIAN FILTER (RMF) AND COMPARES FILTERED AND UNFILTERED
ARRAYS TO DETERMINE WHICH DATA IS “"SPIKED".
----- "IWORK(NPTS)" IS A WORKING ARRAY WHICH WILL BE RETURNED WITH THE
ABSOLUTE DIFFERENCE BETWEEN "IDATA"™ AND "IDATA" FILTERED BY AN RMF
(WHEN INTERP.GE.f).
----- "MAXDUR" MUST BE NON-NEGATIVE (ZERO WILL CAUSE IMMEDIATE RETURN
FROM THE ROUTINE WITHOUT ANY FILTERING).
----- "MINSIZ" MUST BE POSITIVE.
----- "NPTS" MUST BE GREATER THAN 2*MAXDUR
JOHN R. EVANS,
U. S. GEOLOGICAL SURVEY
345 MIDDLEFIELD ROAD, MS-77
MENLO PARK, CA 94¢25
#4/16/80

c
c
C
C
C THE STATEMENT COMMENTED OUT BY "C:" CAN BE USED TO TELL THE ROUTINE ABOUT
C KNOWN BAD POINTS (PREVIOUSLY SET TO VALUE 99999). THEY WILL BE

g INTERPOLATED ACROSS T0O.

c

C

C

INTEGER IDATA(NPTS), INORK (NPTS),MINSIZ
LOGICAL SPKFLG(NPTS)
— INITIALIZE ARRAYS AND CHECK INPUT PARAMETERS----eeeemeccccmcmcccccccccceee

IF (NPTS.LT.2*MAXDUR+1) GOTO 400
IF (INTERP.LT.@) GOTO 22
DO 1¢ I=1,NPTS
IWORK (I)=IDATA(I)

18 SPKFLG(I)=.TRUE.
IF (MAXDUR.LE.#) RETURN
IF (MINSIZ.LE.@) GOTO 3¢¢

Cowmm- FIND WINDOW LENGTH FOR RUNNING MEDIAN FILTER-----eccmm oo
M=2*MAXDUR+1
(oo s e e e e e e e e e o o e e e e e e e e e e e e e e o e e o o e
- DO RUNN ING MEDIAN FILTER---e-eeeeerecceccececcccccccccrcmcmmec e e
G e e o e e e o o o e o o ot e e e . o £ o P B e . o 2 B B . O o O
Cissss
CALL MEDFLT (IWORK,NPTS,M)
Comm e
g ----- FIND SPIKES-=ermmemm e e e e ——————
DO 2@ I=1,NPTS
C ; R

""" INORK (1)=IABS (IDATA(1)~ IWORK(1))
C: IF (IDATA(I).EQ.99999) GOTO 15

IF (IWORK(I)-MINSIZ) 26,15,15
15 SPKFLG(I)=.FALSE.
20 CONTINUE
R INTERPOLATE ACROSS SPIKES AS REQUESTED---cc-mmemmmo oo
22 IF (INTERP.EQ.@) RETURN
IF (IABS(INTERP).EQ.2) GOTO 200
IF (IABS(INTERP).GT.2) GOTO 1¢@

C oo e e e e - e e e e e o 2 o e e e o o o e o o o
E ----- LINEAR INTERPOLATION-----mccemmomommmmmecococee e e mm e e e e o
I=1
3¢ I=1+1
IF (I-NPTS) 32,31,31
C--=m- DT O
31 RETURN

32 IF (SPKFLG(I)) GOTO 3@
II=1

10
35 I=I+1
IF (.NOT.SPKFLG(I)) GOTO 35
I=I-1
ITI=1

D=FLOAT(IDATA(II-1))

Y=FLOAT(IDATA(III+1)-IDATA(II-1))
X=FLOAT(III-II+2)
DO 4¢ J=11,111
DD=D+Y*FLOAT(J-II+1)/X
IF (DD) 37,39,39

39 IDATA(J)=IFIX(DD+@.5)
49 CONTINUE
GOTO 3¢

C USER CAN ADD A SUBROUTINE OPERATING ACROSS AREAS WHERE "SPKFLG" IS .FALSE.
C (ONLY ONE "GOOD" POINT ON EITHER SIDE OF A SPIKE IS ASSURED, BUT MORE WILL
C USUALLY BE FOUND BY SCANNING "SPKFLG"--TYPICALLY MAXDUR+1 OR MORE. SOME
C RARE CIRCUMSTANCES EXIST IN WHICH "GOOD" POINTS REALLY AREN'T--USE ANY

C SPECIAL KNOWLEDGE TO WEED THEM OUT BEFORE INTERPOLATING.)

188 WRITE (6,118)
119 FORMAT (/," ONLY LINEAR AND CUBIC INTERPOLATIONS AVAILABLE NOW

*(ROUTINE DESPIK)",/," --=--- DOING CUBIC INTERPOLATION------ /)
Cmmm e r e
Conwen PIECEWISE CONTINUOUS CUBIC POLYNOMIAL INTERPOLATION--------eeeccmcmcmmean=
Cmmr e e e —— c——————————— ——— = = o 1 o . e 2 e e e e e 5 e e e e e e e e o e

c BASED ON AVERAGE SLOPE INTERPOLATION OF WIGGINS (1976):

c FIND SPIKES AND TWO GOOD POINTS ON EITHER SIDE (IF ONLY ONE GOOD

C POINT IS FOUND BEFORE END OF ARRAY IS ENCOUNTERED, USE A FAKE POINT
c OF THE SAME VALUE AS THE LAST GOOD ONE).

215 RETURN
228 IF (SPKFLG(I)) GOTO 218
1I=1
23¢ 1=1+1
IF (iNOT.SPKFLG(I)) GOTO 23¢
I=1-
111=1

" YB=FLOAT(IDATA(II-1))
XB=FLOAT(II-1)

11

YC=FLOAT(IDATA(III+1))
XC=FLOAT(III+1)
JJ=11-1
235 JJ=JJ-1
IF (JJ) 240,248,245
248 YA=YB
XA=XB-1.
GOTO 250
245 IF (.NOT.SPKFLG(JJ)) GOTO 235
YA=FLOAT(IDATA(JJ))
XA=FLOAT(JJ)
25@ JJJ=111+1
255 JJJ=JJd+1
IF (JJJ-NPTS) 265,265,268
260 YD=YC
XD=XC+1.
GOTO 279
265 IF (.NOT.SPKFLG(JJJ)) GOTO 255
YD=FLOAT(IDATA(JJJ))
XD=FLOAT(JJJ)

279 XB=XB-XA
XC=XC-XA
XD=XD-XA
XS=XA
XA=@.

Crmom- SUBTRACT YA FROM ALL Y VALUES TO PREVENT ROUND-OFF ERRORS-----===eeeeeeem-
YB=YB-YA
YC=YC-YA
YD=YD-YA
YS=YA
YA=d.

R=(YB-YA)/(XB-XA)

S=(YC-YB)/(XC-XB)

T=(YD-YC)/(XD-XC)

WR=1./AMAX1 (R, 4. 000001)

WS=1./AMAX1(S,0.000001)

WT=1./AMAX1(T,d.0000081)

SB=(WR*R+WS*S)/ (WR+WS)

SC=(WS*S+WT*T)/ (WS+WT)

(— CALCULATE THE FOUR COEFFICIENTS OF THE CUBIC-----mmmomemmmmme e mcmmmmmem

XB2=XB*XB

XB3=XB2*XB

XB4=XB3*XB

XC2=XC*XC

XC3=XC2*XC

XC4=XC3*XC

DETA=XB4-4 . *XC*XB3+6 . *XC2*XB2-4 . *XC3*XB+XC4
DETC1=2.*(XC-XB)*(YB-YC)+ (XB2-2.*XC*XB+XC2)*(SB+SC)
DETC2=3.*(YB-YC)*(XB2-XC2)-SB*(XB3-3.*XC2*XB+2.*XC3)
B -SC*(2.*XB3-3.*XC*XB2+XC3)

12
DETC3=6.*(YB-YC)*(XC2*XB-XC*XB2)+SB*(XC4-3. *XC2*XB2+2 . *XC*XB3)
B +SC*(XB4-3.*XC2*XB2+2.*XC3*XB)
DETC4=YB*(XC4-4.*XC3*XB+3.*XC2*XB2)
B +YC*(XB4-4 . *XC*XB3+3.*XC2*XB2)
C +SB* (-XC4*XB+2.*XC3*XB2-XC2*XB3)
D +SC*(-XC*XB4+2.*XC2*XB3-XC3*XB2)
C1=DETC1/DETA
C2=DETC2/DETA
C3=DETC3/DETA
C4=DETC4 /DETA
Cremm- FILL IN INTERPOLATED POINTS---wmcccr e cm e m e e e e
DO 29¢ J=II,III
XX=FLOAT(J)-XS
DD= CT*XX*XX*XX + C2*XX*XX + C3*XX + C4 + YS
IF (DD) 285,287,287

285 IDATA(J)=IFIX(DD-@.5)
GOTO 290

287 IDATA(J)=IFIX(DD+§.5)

29¢ CONTINUE

GOTO 214
Clm e e o e o e e o 1 o e e e o 1 e e e e e e o e e o e e e e e
C----- WARN INGS AND ABNORMAL EXIT POINTS---erecmrc e e e e
e e e e e e e e o e e e e e e o o e e e o e e e e e o e e

309 WRITE (6,31¢)

318 FORMAT (/," SPIKE SIZE TOO SMALL IN ROUTINE DESPIK.",/,
*" STOPPING RUN.",/)
STOP

400 WRITE (6,418) NPTS

419 FORMAT (/," TOO FEW POINTS (“,I7,") IN ROUTINE DESPIK.",/,
*" NO FILTERING DONE.",/)
RETURN
END

13
REFERENCES

Evans, John R. (1981). Running median filters and a general despiker, Bull.
Seis. Soc. Am., submitted.

Tuckey, John W. (1977) Exploratory data analysis, Addison-Wesley Publishing
Company, Reading, Massachusetts, 688 p.

Velleman, Paul F. and David C. Hoaglin (1978). Implementation of some
res1stant non-linear smoothers, Economic and Social Statistics Technical
Report Series, (878/#18), New York State School of Industrial and Labor
Relations, Cornell University, 38 p.

Wiggins, Ra]ph A. (1976). Interpolation of digitized curves, Bull. Seis. Soc.
Am., vol. 66, pp. 2¢77-2p81.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

14
FIGURE CAPTIONS
"Transfer behavior" of a running median filter compared to
transfer function of a running mean (m=5) for a 1¥24-point gaussian
white noise sample. Each decade of "Power" is 1¢dB. These are
ensemble averages of 15 estimates. Since the test data have no
associated sample rate (they are just a series of points without
reference to time), there are no units attached to frequency.
Frequency 512 is nyquist; tick marks between nyquist and zero
frequency are at 2¢% intervals. Phase is in radians.

From top to bottom: 1f24-point noise sample; sample filtered by
running median (m=7); sample filtered by 7-point running mean.
Running median filter removes spikes much better than running mean.

Effect of running medians and running means on WWVB radio time code.
Note undesirable slopes introduced into square wave by running means,
and points “copied on" at both ends of sample where filters are
undefined. Digitized at 2@ samples per second.

The effect of the general despiker DESPIK. From top to bottom:
synthetic spikes, original seismogram, original plus spikes (input to
filter), filtered seismogram, error in recovering original. Total
spikes (integral of noise) are reduced by 92%; signal/noise is
improved from 1.2 to 2.9.

White Noise Transfer Behavior
of 5-Pownt Runnigg Median

=]
Al ©
)
A
S
—
5 . /"Y 3
3 2
Q
L e
)
Y
?
e
o
T X
: T 1 T T T 1 "’ LU T o L ¥
0.0 102.4 2048 3072 4096 5220 00 102.4 2048 s072 036 5o
Frequency Fregquency
White Noise Transfer Behavior
of 5—Point Running Mean
* .
-
e
3 oS e SR
e o
s 8 .
3 3 : .
< %
)) .
§-——-—-—-—-—-~<«»— R
3 L ek
?
e
1 3
2 ¥ T \J v T 1 ? T L L T]
oD 102.4 2048 3072 4096 s20 00 102.4 2048 so72 4096 szo
Frequency Freguency

Figure 1

Gaussian White Noise + Spikes

Filtered by 7-Point Running Median

e A e AT b N AT A A A pioma S ey

Filtered by 7—Point Running Mean

\NWWvﬁ,JLJ\\,WNJLN..WJ\VMNWJ\,WM:L,WWVh

Figure 2

INRNR
Ik

uvagy buruuny purog—gs Aq pasayqig

‘Figure 3

umpayy buruuny jurod—gs Aiq patayqry

uvay Buruuny jurod—g Aq patayiry

uoipay Suruuny purog—gr Aq pasaznnd

(puooag sad sajdwng (02) 2P0) 2w HAMM

sjunos 001

SPIKES (9%)
ORIGINAL (200 sps, 1 Hz vertical)

s, n

SUM -
FILTERED (maxdur 1, minsiz 3)

Db

FILTERED - ORIGINAL

TIME (seconds)
Figure 4

